Periodic wavelet frames and time–frequency localization
نویسندگان
چکیده
منابع مشابه
Tight Periodic Wavelet Frames and Approximation Orders
A systematic study on tight periodic wavelet frames and their approximation orders is conducted. We identify a necessary and sufficient condition, in terms of refinement masks, for applying the unitary extension principle for periodic functions to construct tight wavelet frames. Then a theory on the approximation orders of truncated tight frame series is established, which facilitates the const...
متن کاملWavelets, multiwavelets and wavelet frames for periodic functions
Various results on constructing wavelets, multiwavelets and wavelet frames for periodic functions are reviewed. The orthonormal and Riesz bases as well as frames are constructed from sequences of subspaces called multiresolution analyses. These studies employ general frequency-based approaches facilitated by functions known as orthogonal splines and polyphase splines. While the focus is on the ...
متن کاملConstructions of periodic wavelet frames using extension principles ∗
Since the extension principles of constructing wavelet frames were presented, a lot of symmetric and compactly supported wavelet frames with high vanishing moments have been constructed. However the problem of constructing periodic wavelet frames with the help of extension principles is open. In this paper, we will construct tight periodic wavelet frames using the unitary extension principle an...
متن کاملConstruction of Periodic Wavelet Frames Generated by the Walsh Polynomials
An explicit method for the construction of a tight wavelet frame generated by the Walsh polynomials with the help of extension principles was presented by Shah (Shah, 2013). In this article, we extend the notion of wavelet frames to periodic wavelet frames generated by the Walsh polynomials on R by using extension principles. We first show that under some mild conditions, the periodization of a...
متن کاملExtension Principles for Tight Wavelet Frames of Periodic Functions
A unitary extension principle for constructing normalized tight wavelet frames of periodic functions of one or higher dimensions is established. While the wavelets are nonstationary, the method much simplifies their construction by reducing it to a matrix extension problem that involves finite rows of complex numbers. Further flexibility is achieved by reformulating the result as an oblique ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2014
ISSN: 1063-5203
DOI: 10.1016/j.acha.2014.02.002